Download the report

Feeling the Heat: Global Warming Potentials and 20- vs. 100-year Time Horizons - Climate TRACE

News & Insights

Feeling the Heat: Global Warming Potentials and 20- vs. 100-year Time Horizons

Aug 10, 2022

By Ann Marie Gardner

News

Greenhouse gases (GHGs) such as carbon dioxide and methane have different lifespans in the Earth’s atmosphere, ranging from a century to a millennium with the former to about 12 years for the latter. Consequently, the potency of their impact on climate change (i.e., their global warming potential) will vary, not just based on their heat-trapping qualities, but also depending on what time horizon you consider.

Comparing GHGs by their global warming potential

Global warming potential (GWP) is a metric developed to make it easier to compare the climate change effects of different GHGs. Carbon dioxide — the most abundant GHG — is the reference gas, so its GWP is always 1 on all time scales. Other gases such as methane and nitrous oxide each have their own GWPs relative to carbon dioxide.

For example, nitrous oxide — another long-lived GHG, but one present in far smaller amounts than carbon dioxide — has a GWP of 273 on a 100-year time frame, meaning that its effect on Earth’s climate is 273x greater than carbon dioxide over that period. By contrast, methane’s 100-year GWP is about 30. However, it is a shorter-lived GHG. If we instead look at its 20-year GWP, methane roughly triples to about 80.

Thus, accurately comparing the climate impacts of different GHGs requires looking at their respective GWPs on consistent time horizons. This approach is also the basis for reporting all gases in a single, combined metric of carbon dioxide equivalent (i.e., CO2e or CO2eq).

The importance of 20- vs. 100-year GWPs

GWPs for major GHGs are most often listed for 20-, 100-, and 500-year time frames. The UN IPCC (among many other organizations) uses 100-year GWPs as the standard. The 100-year time horizon does a good job balancing the combined impacts of short- and long-lived GHGs, and is on a time scale for meaningful climate action.

In recent years, though, 20-year GWPs have gained increasing attention. The 20-year perspective gives stronger weighting to potent but shorter-lived GHGs such as methane whose impacts otherwise get ‘diluted’ in 100-year GWPs. As the climate crisis worsens and accelerates, this 20-year view helps countries, corporations, and other emitters prioritize near-term, high-impact opportunities to reduce GHG emissions. By the same token, however, a 20-year GWP that focuses attention on shorter-lived GHGs such as methane could inadvertently cause emissions reductions efforts to de-prioritize longer-lived, more-abundant gases such as carbon dioxide.

Evolving metrics — looking beyond pure GWP

Given the important of balancing short-term and long-term climate impacts of different gases, there’s been talk of dual 20- and 100-year reporting. Scientists have also been looking at a new era of climate change metrics for GHGs.

One such metric is the global temperature-change potential (GTP). Whereas GWP measures how much energy the atmosphere absorbs, GTP calculates how much warmer the Earth will get as a result of that absorbed energy (i.e., how much mean global temperature will go up). As with calculating GWPs for specific gases vs. a combined metric of CO2e, so too can GTP be calculated for GHGs individually as well as for them in aggregate via a combined GTP number (CGTP).

Another new metric under consideration is GWP*. It is an attempt to more-accurately reflect the climate influence of a time-series of short-lived GHGs such as methane, the incremental impact of increases or decreases in their emissions, and the tradeoffs between calculating their potency across different time scales.

How Climate TRACE reports GHGs

Since launching our emissions inventory dashboard in September 2021, Climate TRACE has reported CO2e-100 numbers for countries, sectors, and subsectors using GWPs from the IPCC’s Fifth Assessment report. As of July 2022, we’ve updated our CO2e-100 numbers with GWPs from the IPCC’s newer Sixth Assessment report.

Plus, we’ve added more detail and options to the beta version of our updated emissions inventory user interface (UI): you can now toggle between 20- and 100-year time horizons, and you can view combined CO2e or you can examine specific gases such as carbon dioxide, methane, and nitrous oxide. These UI updates will be reflected on the main Climate TRACE emissions inventory UI later this year.

Read More

Loading


Independent Greenhouse gas Emissions Tracking

Loading data from 395075 emissions sources summarized from 352055431 assets.

Please, use new browser.
We use modern web technologies which are not supported with your outdated browser.